DFT-Assisted Polymorph Identification from Lattice Raman Fingerprinting
نویسندگان
چکیده
A combined experimental and theoretical approach, consisting of lattice phonon Raman spectroscopy and density functional theory (DFT) calculations, is proposed as a tool for lattice dynamics characterization and polymorph phase identification. To illustrate the reliability of the method, the lattice phonon Raman spectra of two polymorphs of the molecule 2,7-dioctyloxy[1]benzothieno[3,2-b]benzothiophene are investigated. We show that DFT calculations of the lattice vibrations based on the known crystal structures, including many-body dispersion van der Waals (MBD-vdW) corrections, predict experimental data within an accuracy of ≪5 cm-1 (≪0.6 meV). Due to the high accuracy of the simulations, they can be used to unambiguously identify different polymorphs and to characterize the nature of the lattice vibrations and their relationship to the structural properties. More generally, this work implies that DFT-MBD-vdW is a promising method to describe also other physical properties that depend on lattice dynamics like charge transport.
منابع مشابه
Raman Identification of Polymorphs in Pentacene Films
We use Raman spectroscopy to characterize thin films of pentacene grown on Si/SiOx by Supersonic Molecular Beam Deposition (SuMBD). We find that films up to a thickness of about 781 Å (∼ 52 monolayers) all belong to the so-called thin-film (TF) phase. The appearance with strong intensity of some lattice phonons suggests that the films are characterized by good intra-layer order. A comparison of...
متن کاملPolymorph characterization of active pharmaceutical ingredients (APIs) using low-frequency Raman spectroscopy.
Polymorph detection, identification, and quantitation in crystalline materials are of great importance to the pharmaceutical industry. Vibrational spectroscopic techniques used for this purpose include Fourier transform mid-infrared (FT-MIR) spectroscopy, Fourier transform near-infrared (FT-NIR) spectroscopy, Raman spectroscopy, and terahertz (THz) and far-infrared (FIR) spectroscopy. Typically...
متن کاملSurface induces different crystal structures in a room temperature switchable spin crossover compound.
We investigated the influence of surfaces in the formation of different crystal structures of a spin crossover compound, namely [Fe(L)2] (LH: (2-(pyrazol-1-yl)-6-(1H-tetrazol-5-yl)pyridine), which is a neutral compound thermally switchable around room temperature. We observed that the surface induces the formation of two different crystal structures, which exhibit opposite spin transitions, i.e...
متن کاملLattice dynamics of β-V2O5: Raman spectroscopic insight into the atomistic structure of a high-pressure vanadium pentoxide polymorph.
We report here the Raman spectrum and lattice dynamics study of a well-crystallized β-V(2)O(5) material prepared via a high-temperature/high-pressure (HT/HP) route, using α-V(2)O(5) as the precursor. Periodic quantum-chemical density functional theory calculations show good agreement with the experimental results and allow one to assign the observed spectral features to specific vibrational mod...
متن کاملSynthesis of Serrated GaN Nanowires for Hydrogen Gas Sensors Applications by Plasma-Assisted Vapor Phase Deposition Method
Nowadays, the semiconductor nanowires (NWs) typically used in hydrogen gas sensors. Gallium nitride (GaN) with a wide band gap of 3.4 eV, is one of the best semiconductors for this function. NWs surface roughness have important role in gas sensors performance. In this research, GaN NWs have been synthesized on Si substrate by plasma-assisted vapor phase deposition at different deposition time, ...
متن کامل